CB_banner_new.jpg
Mi van az agyunkban?

Mi van az agyunkban?

faceneuron.gifMi van az agyunkban, legfontosabb szervünkben, ami nagy valószínűséggel a világegyetem legkomplexebb objektuma is egyben? Természetesen neuronok. De kielégítő ez a válasz? Ha azt kérdeznénk, hogy mi van egy könyvben, és azt a választ kapnánk, hogy betűk, akkor nem lennénk vele túlságosan megelégedve. A kérdés az, hogy a neuronok aktivitás-mintázatukkal mit reprezentálnak, azaz mi a jelentésük a világ dolgaihoz viszonyítva. A szavak vagy mondatok egy kínai könyvben szintúgy csak formai elemek, önmagukban nem hordoznak semmiféle információt számunkra, csak akkor, ha egy szótárat is mellékelünk a kínai íráshoz.

Egy könyvtől persze sok vonatkozásban eltér az agyunk. Egyrészt nem statikus, hanem tanulás által folyamatosan változik. Rengeteg információ megy bele, kérdés hogy mit tart meg belőle és milyen struktúrába rendezve. Másrészt a könyvtől eltérően nem csak tárolja az információt, hanem saját magát olvassa és értelmezi is, majd az információt felhasználva tudatosan és tudattalanul is következtetéseket tesz és döntéseket hoz. Ráadásul mindezt egyazon biológiai rendszer. Bár vannak specializálódott területek az agyban és az idegsejtek is meglehetősen sokfélék, a tárolást és feldolgozást az agy ugyanazon a struktúrán valósítja meg párhuzamosan, ami igazán lenyűgöző.

Mi van az agyunkban? Tovább
Génmódosítás-e a génszerkesztés?

Génmódosítás-e a génszerkesztés?

sketch_cbm.jpg

Első olvasatra talán értelmetlen szőrszálhasogatásnak tűnhet a címben feltett kérdés, hiszen ha valamilyen módon elérjük a genetikai anyag megváltozását, az nyilván módosítást jelent, ugyanakkor a szemantikázás egyáltalán nem véletlen és fölösleges: 

nem kevesebbről szól ugyanis, mint, hogy mit tekintünk ma Európában GMO-nak.

Márpedig az nyilvánvaló, hogy - bár sok szempontból logikus lenne - se a közvélemény, se a törvények nem tekintik egyenlőnek a génmódosítás különböző formáit. Senki nem gondolja GMO-nak a hagyományos, háziasított állat és növényfajtákat (bármennyire is radikálisan különböznek a valóban természetes, vadon élő rokonaiktól), de a határ még csak nem is az egyszerű természetes szelekció és a "mesterséges", emberi rásegítés köt van, hiszen például a mutációk véletlenszerű megjelenésének gyakoriságát nagyságrendekkel megnövelő radioaktív-sugárzáson alapuló módszerek elfogadhatóak a nem-GMO kategóriában, de a pontosabb molekuláris biológiai beavatkozások már nem. Ez a teljesen ad hoc (és ma már kifejezetten zöld-szimpatizáns publicisták szerint is értelmetlen) osztályozás azonban az újgenerációs genomszerkesztési módszerek megjelenésével komoly dilemma elé állítja a törvényhozókat: lehet-e (kell-e) pusztán egy technológia alkalmazását szankcionálni, ha annak eredménye sok esetben az eddigi szabályok szószerint vételével sem eredményez GMO-t? 

Génmódosítás-e a génszerkesztés? Tovább
Génmódosított szúnyogokkal a zika vírus ellen

Génmódosított szúnyogokkal a zika vírus ellen

oxitec_larvae.jpg

Amikor bő egy hónapja a gene drive-ok működési mechanizmusáról, illetve az általunk felvetett etikai dilemmákról írtam, még nem tűnt valószínűnek, hogy a bevetésük hamarosan nagyon is időszerűnek fog tűnni. Márpedig az egyelőre megállíthatatlanul terjedő zika vírus kapcsán most mégis egyre több helyen írnak erről.  

A zika vírus egy gyenge dengue vírusnak tekinthető, melynek köztes gazdái (akárcsak a maláriának) szúnyogok. 1947-ben, Ugandában írták le először, rézusz majmokban, s mivel az alaptünetei (max. egy hét alatt elmúló enyhe láz, kötőhártya gyulladás és viszketés) nem annyira durvák, az elmúlt hónapokig nem igazán szentelt senki túlzott nagy figyelmet a vírus biológiájának. Ez azonban nyilván nem marad sokáig így.

Génmódosított szúnyogokkal a zika vírus ellen Tovább
Mit szúrtak el a Biotrial gyógyszerkísérletében?

Mit szúrtak el a Biotrial gyógyszerkísérletében?

000_760ik.jpg

Amikor nemrég először kikerült a hírekbe, hogy a francia Rennes-ben folyó gyógyszerkísérlet során hat vizsgálati alanyt kórházba kellett vinni (az egyikük, mint azóta tudjuk, meg is halt), valószínűleg mindenkinek, aki egy kicsit is követi az ilyen híreket, az első szó (karakterkombináció?), ami az eszébe jutott az volt, hogy „TGN1412”.

Utóbbi egy tíz évvel ezelőtti gyógyszerjelölt, amelyet Londonban próbáltak ki, egészen tragikus eredménnyel: egy órával a szer beadás után mind a hat kísérleti alany rosszul lett, hamarosan súlyos légzési zavarjaik alakultak ki, leállt a veséjük, majd végtagjaik keringése, így pár beteg ujjait amputálni kellett.  Mindez mindenkit teljesen váratlanul ért, mert a szer egy ún. CD28-szuper ellenanyag, amelynek feladata pont az immunrendszer segítése lett volna bizonyos betegségek (reuma és B-sejtes leukémia) esetében. A vizsgálati alanyok teljesen egészségesek voltak. Ez egy első fázisú gyógyszerkísérlet volt, amikor a szer biztonságát ellenőrizték és hát ennél látványosabban nem lehetett volna belebukni. Azóta eltelt tíz év, és most a rennes-i kísérlet kapcsán feltehetjük a kérdést, hogy levontuk-e a TGN1412 történetéből a megfelelő tanulságokat?

Mit szúrtak el a Biotrial gyógyszerkísérletében? Tovább
Kék biotechnológia

Kék biotechnológia

kekbiotech_1.pngA kék biotechnológia hazánkat kevéssé érintő tudományág, ugyanis a tengeri élőlényeket tanulmányozza és azok biotechnológiai célú felhasználását. Egy nagyon izgalmas tudományág, főleg ha figyelembe vesszük, hogy bolygónk kétharmadát víz borítja, a növekvő népesség ellátása pedig egy nagyobb terhet ró rá, tehát logikus, hogy új területeket keressünk, amivel gazdaságosan tudjuk termékeinket előállítani. A lehetőségek gyakorlatilag végtelenek: lehet egy új rákterápia, vagy bármilyen vegyi anyag, de akár egy víz alatti ültetvény (aquaculture). Mellette szól még, hogy a szárazföldi élőlényekhez képest meglehetősen kevés ismerettel rendelkezünk az óceánok élővilágáról, tehát ha elég türelmesek (értsd, pénzesek) vagyunk, a tengeri élőlények forradalmasíthatják iparunkat.

Kék biotechnológia Tovább
Újgenerációs génterápia lehet az izomsorvadásos gyerekek reménye

Újgenerációs génterápia lehet az izomsorvadásos gyerekek reménye

dmd_landscape.jpg

Képzeld el, hogy egészségesnek tűnő gyereked nyolc éves kora után előbb tolószékbe kényszerül, mert lábai felmondják a szolgálatot, majd pár évvel később a kezeivel történik ugyanez, magatehetetlenné és kiszolgáltatottá téve őt, s végül huszas éveiben egyszer csak a szíve és/vagy a tüdeje is feladja. És most képzeld el, hogy bár előre tudod mindezt, úgy kell végignézd, hogy semmit nem tehetsz ellene.

Újgenerációs génterápia lehet az izomsorvadásos gyerekek reménye Tovább
A <i>GDF6</i> gén és az evolúció

A GDF6 gén és az evolúció

sticklebacks.jpegJó pár évvel ezelőtt, a blog hajnalán, az egyik legizgalmasabb és legfelkapottabb kérdés a biológiában az volt, hogy a különböző fajok (alfajok) morfológiai sajátosságai miképpen alakulnak ki a fejlődés során. Az evodevo tudománya - mert arról van szó - azóta kicsit kiment a mainstream divatból, de ha engem kérdezne bárki, szerintem továbbra is az egyik legizgalmasabb kérdés, amivel biológus foglalkozhat.

A terület egyik úttörője, Sean B. Carroll mellett David Kingsley volt, aki azóta is azzal a nagyon egyszerű paradigmával foglalkozik, hogy milyen genetikai különbségek találhatók a háromtüskés pikó páncélos, tüskés tengeri és páncéltalan, tüskétlen édesvízi formái között.

Ahogy azt már korábban leírtam, ezzel a megközelítéssel leltek arra a pitx1 szabályozó mutációra, ami a tüskék eltűnését eredményezi, illetve így térképezték fel csontlemezek redukciójáért felelős ectodysplasin (eda) gént érintő mutációt is.

A GDF6 gén és az evolúció Tovább
A tasmán ördögöt az ág is húzza

A tasmán ördögöt az ág is húzza

dft2-tumour.jpgA fejlett világ egyik vezető halálokává előlépő dagantos megbetegedések a maguk módján tulajdonképpen nem is annyira durvák, mint lehetnének, hiszen nem fertőzőek, így minden egyes betegben a korábbiaktól függetlenül kell kialakulnia a rosszindulatú elváltozást okozó, majd metasztatizálást lehetővé tevő mutáció-kombinációnak.

Nem minden állat ennyire szerencsés azonban, mint korábban arról a blogban is szót ejtettünk legalább három fajról tudunk, ahol létezik ragályos rák: a kutyák, egy észak-amerikai kagylófaj, valamint a tasmán ördög esetében.

Utóbbiak ráadásul egyébként is veszélyeztetett állatok, így már eddig is sok fejtörést okozott, hogy miképp lehet ezt a mindössze 20 éve felbukkant, de rohanvást terjedő daganat-járványt (Devil Facial Tumour - DFT) megállítani.

Most, mintha a helyzet nem lett volna már eléggé gyászos, kiderült, hogy nem is egy betegségről van szó, hanem (legalább) kettőről. Számos, az "általános" tumortípushoz hasonló kinézetű, de szöveti képében attól azért markánsan eltérő daganatot tipizálva kiderült, hogy azok nem az ősi DFT-klón leszármazottai, hanem attól teljesen függetlenül alakultak ki (és akkor a korábban leírt forma innentől DFT1 lesz, az új pedig DFT2).

Ezek a DFT2 tumorok egyáltalán nem hordozzák azokat a marker-mutációkat, amelyek jellegzetesek a DFT1-re, sőt a kromoszómaképük (kariotípusuk) is teljesen más: hiányoznak a DFT1 aneuploid markerkromoszómái (M1-4), vannak felismerhető nemi kromoszómáik, akárcsak a kettes kromoszómapár, ami hiányzik a korábban részletesen leírt tumorból. Nem mellesleg, míg a DFT1 egy nőstény egyedben jött létre, a DFT2-ben találunk Y kromoszómát, vagyis egyértelműen egy hímből származik.

dft2-karyotype.jpg

Miért nagyon rossz hír ez? Azon túl, hogy egyszerre két ragályos daganattípus megállításán kell ezután a tasmán ördögöt féltő szakembereknek ügyködniük, a megfigyelés azt sugallja erősen, hogy ez a faj valamiért hajlamos az ilyen daganatok kitenyésztésére. Annak megértése egyébként tök érdekes lenne, hogy miért is van ez, de persze ehhez arra is szükség lenne, hogy ne haljanak idő előtt ki.


Pye RJ, Pemberton D, Tovar C, Tubio JM, Dun KA,et al. (2016) A second transmissible cancer in Tasmanian devils. PNAS 113(2): 374-9.

A tasmán ördögöt az ág is húzza Tovább
Tényleg tízszer annyi baktériumunk van, mint saját sejtünk?

Tényleg tízszer annyi baktériumunk van, mint saját sejtünk?

microbiome_1a.png

Kevés felkapottabb téma létezett az utóbbi évtizedben, mint a rajtunk és bennünk élő baktériumközösség, az ún. mikrobióta tanulmányozása. Ennek kapcsán az egyik érdekes factoid, amit boldog, boldogtalan, aki a témában mondott valamit (így én magam is) elmondott, az hogy a mikrobiótát tízszer annyi sejt alkotja, mint ahány a saját testünket felépíti.

Az adat nem csak ismeretterjesztő cikkekben, de szakmai összefoglalókban is szerepelt, a New York-i Természettudományi Múzeum aktuálisan futó kiállításának brossúrájában is fellelhető, s csak egy gond van vele: úgy tűnik, hogy nem pontos. A hetvenes évekbeli sejtszám becslések, amelyek alapján kijött, túlbecsülték a baktériumok, illetve alulecsülték a testi sejtek számát. 

Tényleg tízszer annyi baktériumunk van, mint saját sejtünk? Tovább
A kínai vakmárnák evolúciója

A kínai vakmárnák evolúciója

sinocyclochelius.jpgA barlangi élet különös alkalmazkodásokat követel meg azoktól az élőlényektől, akik a létnek ezt a sötét formáját választják. A jóformán örök sötétségben fölöslegessé válik a felszínen oly fontos látás, lényegtelenné a bármilyenfajta mintázat, más érzékek és más jellegek válnak fontossá az életbenmaradás és fajfenntartás céljából. 

És ami már büntetlenül elromolhat, az bizony el is romlik, így aztán azok a gének, amelyek pl. csak a szem kialakításában és működésében, vagy a testtakaró színezetének létrehozásában látnak el szerepet előbb-utóbb olyan mutációkat szednek össze, amely következtében működésképtelenné válnak (pszeudogénesednek), és így a szóbanforgó sejttípusok sem alakulnak ki.

A folyamat egyik poszter-faja a mexikói vaklazac (Astyanax mexicanus), ami a Yucatán alatt található hatalmas barlangrendszerekben lelhető fel, de persze messze nem ez az egyetlen ilyen élőlény. Most a világ egy másik részében élő vak halról tudhattunk meg többet, a genomja segítségével.

A kínai vakmárnák evolúciója Tovább
Hogyan barnultak be a lovak

Hogyan barnultak be a lovak

dun.jpgA lóháziasítás egyik eredménye a különböző fajták minta-diverzitása, ami ha nem is annyira látványos, mint mondjuk kutyák esetében, de mindenképpen figyelemre méltó.

Nem is kerülte el a genetikusok figyelmét, akik az utóbbi pár évben számos mintázat-típus genetikai okát feltárták. 

Most az egyik legősibb színváltozás okába láthatunk bele egy kicsit, amelynek következtében az ősi lovak (pontosabban patások, lásd alább) viszonylag világos, ún. Dun színe helyett a korai háziasított fajták sötétebb, viszonylag egyenletesen barna színt mutattak.

Hogyan barnultak be a lovak Tovább
Tíz éves az optogenetika - de ismerjük-e a korlátait?

Tíz éves az optogenetika - de ismerjük-e a korlátait?

olveczky.jpgA Fény Ünnepe, a Fény Évében - keresve se találhatnánk jobb időpontot, hogy egy kicsit az elmúlt évek egy másik nagy biológiai forradalmával, az optogenetikával foglalkozzunk.

Az emberek esetében a külvilágból érkező ingerek elsöprő többsége vizuális, vagyis a fénnyel és látással kapcsolatos, de az élőlények többsége így-vagy úgy érzékelik a fényt. Ehhez különböző szervezetek különböző fényérzékeny fehérjéket használnak, olyan molekulákat, amelyek egy-egy fotont elnyelve alakváltozáson mennek át, ami befolyásolja a működésüket. Számunkra talána  legkézenfekvőbb, ha a szemünkben található rhodopszin és opszin molekulákra gondolunk, de ilyen fényaktivált receptorokon kívül találunk számos fényérzékeny fehérje-fehérje interakciót a növényekben (amelyek a napszakok és az évszakok változását, illetve a fény irányát követik ezek segítségével), illetve fényre aktiválódó ioncsatornákat algákban és baktériumokban. Ez utóbbiak lettek épp egy évtizede az "optogenetika" forradalmának zászlóvivői (habár ma már más fényérzékeny rendszereket is használunk ugyanezen címszó alatt).

Tíz éves az optogenetika - de ismerjük-e a korlátait? Tovább